

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-06/0009 of 27 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Binderholz Brettsperrholz BBS

Solid wood slab element to be used as a structural element in buildings

Binderholz Bausysteme GmbH Zillertalstraße 39 6263 FÜGEN ÖSTERREICH

W01, W02, W03, W04

21 pages including 6 annexes which form an integral part of this assessment

EAD 130005-00-0304

ETA-06/0009 issued on 2 June 2017

European Technical Assessment ETA-06/0009 English translation prepared by DIBt

Page 2 of 21 | 27 September 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 27 September 2022

Specific Part

1 Technical description of the product

"*Binderholz Brettsperrholz BBS*" are plane timber building components which are made of at least three layers of softwood boards. Adjacent layers are glued together with an angle of 90°. The cross section of the elements is symmetric¹.

The components and the system setup of the elements are given in Annex 1. The building elements are plane.

Up to three adjacent layers may be glued together with direction parallel to the grain if a symmetric and crosswise blocked structure is given.

Not load-bearing outer layers are permissible.

Single board layers (maximum 50% of the cross section) may be replaced by one- and multilayer solid wood panels suitable for structural use according to EN 13986.

The elements can be produced with a width up to 3.5 m and a length up to 22 m as "*Großformat*" or "*Großformat DQ*" and with a width up to 1.26 m und a length up to 5 m as "*Systemformat*".

The building components in "*Systemformat*" can be connected in the plant in longitudinal direction by large finger jointing in accordance with EN 14080 to a length of up to 24 m.

The cross laminated timber elements are manufactured using the automated manufacturing process in accordance with the technical documentation.

The layers are bonded together to the required thickness of the cross laminated timber.

Specifications of the used boards are given in Annex 2. Boards are visually or machine strength graded. Only technically dried wood is used.

Only boards which are planed on both sides of the outer layer are used. The boards may be connected by finger joints in longitudinal direction according to EN 14080. There are no butt joints.

The single boards of the layers in longitudinal direction may be glued at narrow side. The maximum width of the gap is given in Annex 2.

For the bonding of the board layers, for the finger joint connection of the individual boards and for the large finger joint connection an adhesive which meet the requirements of EN 301 shall be used. Alternatively, a one component polyurethane adhesive which meets the requirements of EN 15425, may be used.

Details on the adhesives and the bonding process are deposited with Deutsches Institut für Bautechnik.

The solid wood slab elements correspond to the specifications given in Annexes 1 to 3 of this European Technical Assessment. The material characteristics, dimensions and tolerances of the solid wood slab elements not indicated in these Annexes are given in the technical documentation of the European Technical Assessment.

European Technical Assessment ETA-06/0009 English translation prepared by DIBt

Page 4 of 21 | 27 September 2022

2 Specification of the intended use in accordance with the applicable European Assessment Document

The elements are intended to be used as load-bearing and/or stiffening or not load-bearing wall, ceiling/floor, roof and special construction components for timber structures. They may be stressed by loads both perpendicular to the element plane and in the element plane.

The solid wood slab element shall be subjected to static and quasi-static (non fatigue) actions only.

The solid wood slab element is intended to be used in service classes 1 and 2 according to EN 1995-1-1.

The performances given in Section 3 are only valid if the solid wood slab elements are used in compliance with the specifications and conditions given in Annex 1 to 5.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the solid wood slab element of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

<u>Design</u>

The suitability of the solid wood slab elements for the specified purpose is given under the following conditions:

- Design of the solid wood slab elements is carried out under the responsibility of an engineer experienced in such products.
- Design of the works shall account for the protection of the solid wood slab elements.
- The solid wood slab elements are installed correctly.

Packaging, transport, storage, maintenance and repair

The solid wood slab elements shall be protected during transport and storage against any damage and detrimental moisture effects. The manufacturer's instructions for packaging, transport and storage shall be observed.

The assessment of the fitness for use is based on the assumption that maintenance is not required in service. In case of a severe damage of a solid wood slab element immediate actions regarding the mechanical resistance and stability of the works shall be initiated. Should this situation arise replacement of the elements can be necessary.

Installation

The manufacturer shall prepare assembling instructions in which the product-specific characteristics and important measures to be taken into consideration for assembling are described. The assembling instructions shall be available at every construction site.

The assembling of the solid wood slab elements according to this European Technical Assessment shall be carried out by appropriately qualified personnel.

The products shall be provided with an effective weather protection during installation and in service.

The safety-at-work and health protection regulations have to be observed.

European Technical Assessment ETA-06/0009 English translation prepared by DIBt

Page 5 of 21 | 27 September 2022

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability ¹⁾ (BWR 1)

Essential characteristic	Performance
Bending ²⁾	Annex 3
Tension and compression ²⁾	Annex 3
Shear ²⁾	Annex 3
Embedment strength	Annex 3
Creep and duration of the load	Annex 3
Dimensional stability	Annex 3
In-service environment	Annex 3
Bond integrity	Annex 3
¹⁾ This characteristic also relates to BV	VR 4.

²⁾ Load bearing capacity and stiffness regarding mechanical actions perpendicular to and in plane of the solid wood slab element.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Annex 3
Resistance to fire	Annex 3

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Formaldehyde emission	The cross-laminated timber and the wood based panels used as component comply with EN 13986 of formaldehyde class E1.
Wood preservatives or flame retardants	Wood preservatives and flame retardants are not subject of the ETA.
Release scenarios regarding BWR 3	IA 1, IA 2
Water vapour permeability - Water vapour transmission	Annex 3

3.4 Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Impact resistance	Annex 3

Page 6 of 21 | 27 September 2022

European Technical Assessment ETA-06/0009

English translation prepared by DIBt

3.5 Protection against noise (BWR 5)

Essential characteristic	Performance
Airborne sound insulation	no performance assessed
Impact sound insulation	no performance assessed
Sound absorption	no performance assessed

3.6 Energy economy and heat retention (BWR 6)

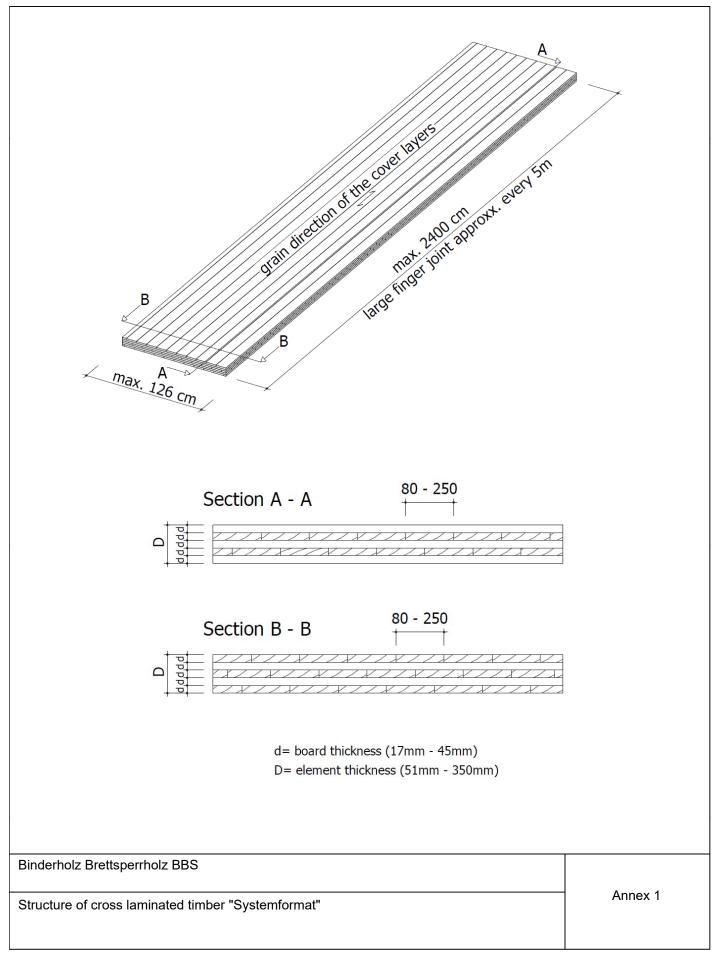
Essential characteristic Performance	
Thermal conductivity	Annex 3
Air permeability	no performance assessed
Thermal inertia	Annex 3

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 130005-00-0304 the applicable European legal act is: 1997/176/EC amended by 2001/596/EC

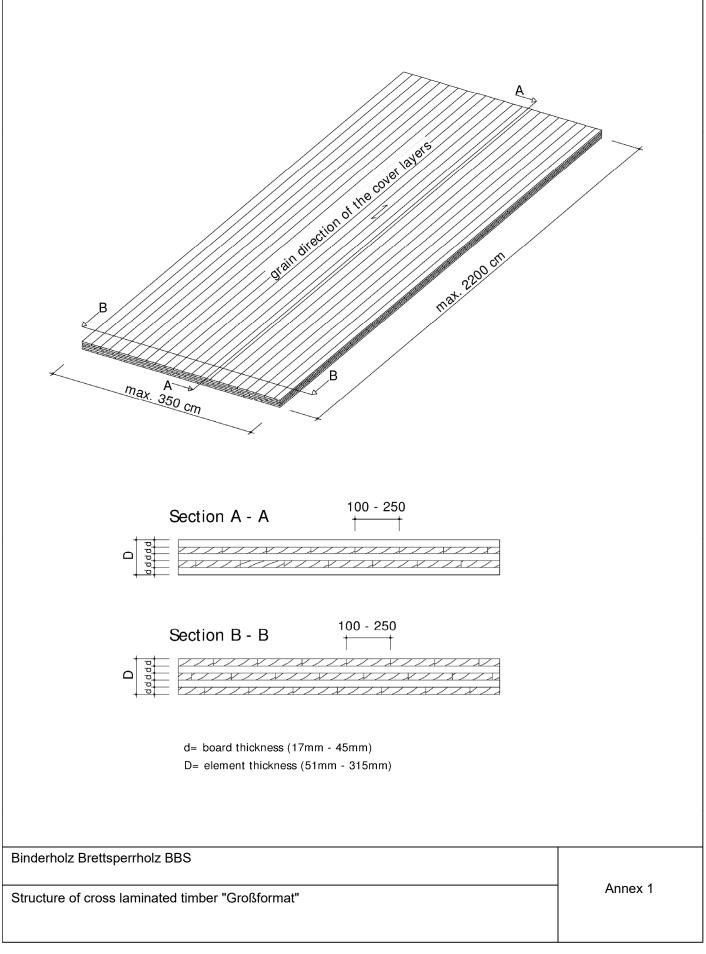
The system to be applied is: 1

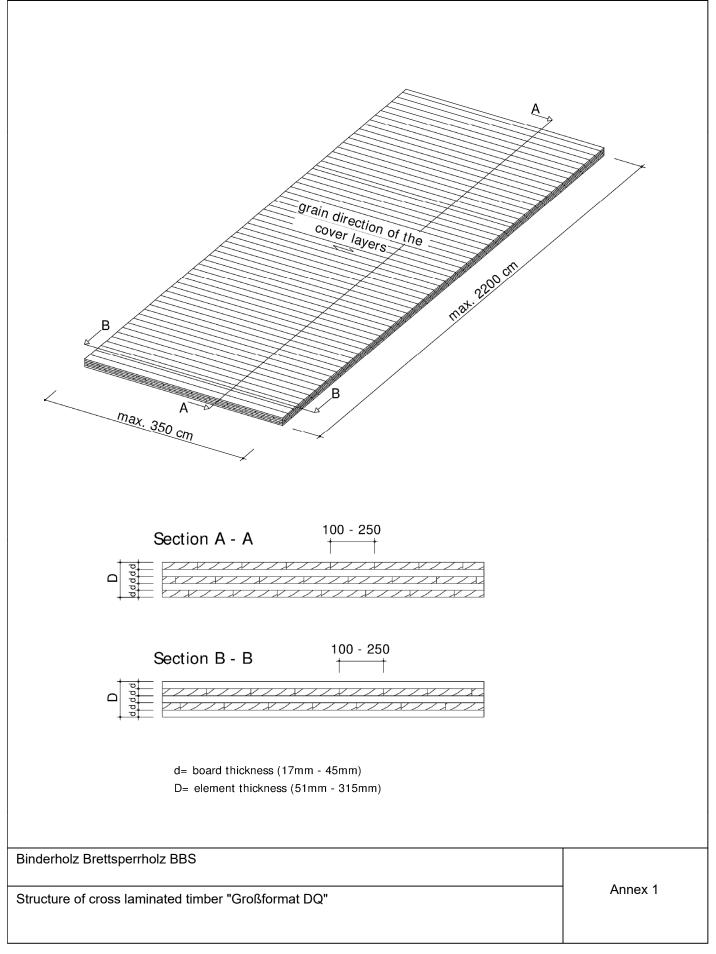
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 27 September 2022 by Deutsches Institut für Bautechnik

Anja Dewitt Head of Section *beglaubigt:* Warns


Page 7 of European Technical Assessment ETA-06/0009 of 27 September 2022


Page 8 of European Technical Assessment ETA-06/0009 of 27 September 2022

Page 9 of European Technical Assessment ETA-06/0009 of 27 September 2022

$51 \text{ mm to } 350 \text{ mm}$ $\pm 1 \text{ mm}$ $\leq 1.26 \text{ m}$ $\pm 2 \text{ mm}$ $\leq 5 \text{ m}$ $\pm 2 \text{ mm}$ $\leq 24 \text{ m}$ $3 \leq n \leq 15$ ≤ 3 4 mm
$ \begin{array}{r} \pm 1 \text{ mm} \\ \leq 1.26 \text{ m} \\ \pm 2 \text{ mm} \\ \leq 5 \text{ m} \\ \pm 2 \text{ mm} \\ \leq 24 \text{ m} \\ \leq 24 \text{ m} \\ 3 \leq n \leq 15 \\ \leq 3 \end{array} $
$\leq 1.26 \text{ m}$ $\pm 2 \text{ mm}$ $\leq 5 \text{ m}$ $\pm 2 \text{ mm}$ $\leq 24 \text{ m}$ $3 \leq n \leq 15$ ≤ 3
$ \pm 2 \text{ mm} $ $ \leq 5 \text{ m} $ $ \pm 2 \text{ mm} $ $ \leq 24 \text{ m} $ $ 3 \leq n \leq 15 $ $ \leq 3 $
$\leq 5 \text{ m}$ $\pm 2 \text{ mm}$ $\leq 24 \text{ m}$ $3 \leq n \leq 15$ ≤ 3
$\begin{array}{r} \pm 2 \text{ mm} \\ \leq 24 \text{ m} \\ 3 \leq n \leq 15 \\ \leq 3 \end{array}$
$\leq 24 \text{ m}$ $3 \leq n \leq 15$ ≤ 3
3 ≤ n ≤ 15 ≤ 3
≤ 3
1 mm
4 11111
according to EN 14080
Symmetric layup ¹⁾
softwood
C 24
C 24
17 to 45 mm
80 to 250 mm
≥ 4:1
11 ± 2 %
according to EN 14080
Solid wood panels according to EN 13986
12 mm to 60 mm
Joints perpendicular to the longitudinal direction are not allowed.
Joints parallel to the longitudinal direction shall be considered in the design.

Page 11 of European Technical Assessment ETA-06/0009 of 27 September 2022

English translation prepared by DIBt

Binderholz Brettsperrholz BBS "Großformat" and "Großformat DQ"					
Characteristic	Specification				
Cross laminated timber element					
Thickness	51 mm to 315 mm				
Tolerance in thickness	± 1 mm				
Width	≤ 3.5 m				
Tolerance in width	± 2 mm				
Length	≤ 22 m				
Tolerance in length (relating to a max. length up to 22 m)	± 2 mm				
Number of layers	3 ≤ n ≤ 15				
maximum number of consecutive layers having the same grain direction	≤ 3				
maximum width of gaps between the boards of a layer	4 mm				
Layup	Symmetric layup ¹⁾				
Boards	-				
Material	softwood				
Strength class according to EN 338					
Cover / longitudinal layers (having the same grain direction as cover layers)	C 24				
Cross layers (having the grain direction perpendicular to the cover layers)	C 24				
Thickness	17 mm to 45 mm				
Width	100 mm to 250 mm				
Ratio width to thickness of the cross-layers	≥ 4:1				
Moisture of wood according to EN 13183-2	11 ± 2 %				
Finger joints	according EN 14080				
Wood based panels	-				
Material	Solid wood panels according to EN 13986				
Thickness	12 mm to 60 mm				
Joints	Joints perpendicular to the longitudinal direction are not allowed.				
	Joints parallel to the longitudinal direction shall be considered in the design.				

Binderholz Brettsperrholz BBS

Dimensions and specifications of the cross laminated timber

Table 1 (continued)

¹⁾ Deviations from symmetric layup:

- The layup (cross-section) of the element is symmetric with respect to the centre layer.
- When using boards of different strength classes the deviations of the elastic centre of gravity from the geometric centre may be disregarded.
- The layup may also be considered as symmetrical when a thick top layer is substituted by up to three thinner parallel oriented layers with approximately the same overall thickness.
- Layers acc. to EN 13986 arranged in addition to the symmetric layup shall be disregarded in design.
- Deviations from symmetry caused by load bearing multi-layered solid wood panels acc. to EN 13986 have to be considered if necessary.

Binderholz Brettsperrholz BBS

Dimensions and specifications of the cross laminated timber

	Requirement	Verific	ation method	Class / Use	category / Value
	Mechanical resistance an	nd stab	bility		
	For the calculation of the individual layers the characteristic strength and stiffness values softwood of the corresponding strength classes acc. to EN 338 shall be used taking in consideration the definitions in Annex 2. In addition the following values apply:				
	Mechanical actions in plane of cross laminated timber		Modulus of elasticity parallel to the grain of the boards	E _{0,mean}	12.000 N/mm ²
	Mechanical actions perpendicular to the plane of cross laminated timber		Modulus of elasticity parallel to the grain of the boards	E _{0,mean}	12.000 N/mm ²
			Rolling shear strength "Systemformat" "Großformat" and "Großformat DQ" (5%-fractile)	fv,9090,k	1.0 N/mm²
1			Rolling shear modulus (mean value)	G9090,mean	50 N/mm²
				niane the cha	
	strength has to be reduced For references regarding	by 30	f tensile stresses in the panel %. Iculation see annex 4. Nationa		
	strength has to be reduced For references regarding followed.	by 30 the ca	%. Iculation see annex 4. Nationa		
	strength has to be reduced For references regarding	by 30 the ca acc Moi	%.	I regulations r	night have to be
	strength has to be reduced For references regarding followed. Creep and duration of load	by 30 the ca acc Moi adv	%. Iculation see annex 4. Nationa cording to EN 1995-1-1 isture content during use shall	I regulations r	night have to be
	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability	by 30 the ca acc Moi adv EN	%. Iculation see annex 4. Nationa cording to EN 1995-1-1 isture content during use shall verse deformations can occur.	I regulations r	night have to be
	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability In-service environment	by 30 the ca acc Moi adv EN	%. Iculation see annex 4. Nationa ording to EN 1995-1-1 isture content during use shall rerse deformations can occur. 1995-1-1	I regulations r not change t	night have to be
2	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability In-service environment Bond integrity	by 30 the ca acc Moi adv EN	%. Iculation see annex 4. Nationa ording to EN 1995-1-1 isture content during use shall rerse deformations can occur. 1995-1-1	I regulations r not change t	night have to be
2	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability In-service environment Bond integrity Safety in case of fire	by 30 the ca Acc Moi adv EN EAI	%. Iculation see annex 4. Nationa ording to EN 1995-1-1 isture content during use shall rerse deformations can occur. 1995-1-1	I regulations r not change t 1 and 2 Passed	night have to be
2	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability In-service environment Bond integrity Safety in case of fire Reaction to fire Timber elements except for floorings Hygiene, health and the e	by 30 the ca Moi adv EN EAI	%. Iculation see annex 4. Nationa ording to EN 1995-1-1 isture content during use shall verse deformations can occur. 1995-1-1 D 130005-00-0304 mmission Decision 2005/610/EC	I regulations r not change t 1 and 2 Passed	night have to be o such extent tha
2	strength has to be reduced For references regarding followed. Creep and duration of load Dimensional stability In-service environment Bond integrity Safety in case of fire Reaction to fire Timber elements except for floorings	by 30 the ca Acc Adv EN EAI	%. Iculation see annex 4. Nationa ording to EN 1995-1-1 isture content during use shall verse deformations can occur. 1995-1-1 D 130005-00-0304 mmission Decision 2005/610/EC	I regulations r not change t 1 and 2 Passed	night have to be o such extent tha ss D-s2, d0

Binderholz Brettsperrholz BBS

Essential requirements of the cross laminated timber

	Safety in use				
4	Impact resistance	Soft body resistance is assumed	Soft body resistance is assumed to be fulfilled for walls with a		
	Impact resistance	minimum of 3 layers and minimu	minimum of 3 layers and minimum thickness of 60 mm.		
	Protection against noise				
A	Airbourne sound insulation	no performance assessed			
5	5 Impact sound insulation	no performance assessed			
	Sound absorption	no performance assessed			
	Energy economy and heat re	etention			
The	Thermal conductivity λ	EN ISO 10456	0,12 W/(m ² ·K)		
6	Air tightness	no performance assessed			
	Thermal inertia c₀	EN ISO 10456	1.600 J/(kg•K)		

Binderholz Brettsperrholz BBS

Essential requirements of the cross laminated timber

1 Recommendations for the design of the elements

1.1 General

Design, calculation and realization may be performed according to EN 1995-1-1 considering the following provisions.

The determination of the distribution of stresses and internal forces must consider the influence of shear deformations of the cross layers. In this Annex advice is given on how to perform the calculation of the elements.

If using panels as cover, the deformation of the covers might have to be considered. These cover layers may not be used for calculation of the bearing capacity of the cross laminated timber elements.

1.2 Characteristic values

The characteristic strength and stiffness values can be taken from Annex 2 and 3. In addition the following applies:

The deformations caused by shear forces may be calculated by using the element thickness D irrespective of the given layup and a global shear modulus of $G = 60 \text{ N/mm}^2$ for 3-layer elements and of $G = 80 \text{ N/mm}^2$ for elements with 5 layers or more.

1.3 Mechanical actions perpendicular to the element's plane

1.3.1 Bending and shear

For the calculation of the characteristic values of the element only the boards which are oriented parallel to the span direction may be considered.

For the verification of the bending strength of a layer the design value of the bending strength may be multiplied with a system factor k_{e} :

$$k_{\ell} = min \begin{cases} 1+0.025 \ n \\ 1.1 \end{cases}$$

where n = number of adjacent boards

1.3.2 Tension and compression

The behaviour in bearing and deformation against compression perpendicular to the element's plane can be calculated according to EN 1995-1-1 using the strength and stiffness values given in chapter 1.2. Tension loads perpendicular to plane of the element should be avoided.

1.4 Mechanical actions in plane of the element

For loads in plane of the element only layers can be considered, where the direction of the grain is parallel to the stresses occurring from external loads.

Binderholz Brettsperrholz BBS

Design considerations (informative)

٢

English translation prepared by DIBt

1.4.1 Shear

Shear stresses may be calculated with the gross cross section. These shear stresses are to be compared with an effective characteristic shear strength $f_{v,k}$ according to the following equation:

$$f_{v,k} = min \begin{cases} 3.5 \\ 8.0 \frac{D_{net}}{D} \\ 2.5 \frac{(n-1)(a^2 + b^2)}{6 D b} \end{cases}$$
 in [N/mm²]

where

- D element thickness (see Annex 1)
- D_{net} total thickness of longitudinal or cross layers within the element; the smaller value applies
- n number of layers within the element, adjacent layers with parallel lamellae shall be considered as one layer and
- a, b width of the boards in the longitudinal or cross layers, where b > a(If a and b is unknown, the minimum value must be applied for b.)

1.4.2 Tension and compression

The load-bearing and deformation behaviour in the element plane can be calculated according to EN 1995-1-1 using the strength and stiffness values given in chapter 1.2.

1.5 Buckling

For buckling the 5%-quantile values of the modulus of elasticity may be set to 5/6 of the corresponding mean value: $E_{0.05} = 5/6 E_{0,mean}$

The imperfection factor β_c may be set to $\beta_c = 0.1$ as for glued laminated timber.

Binderholz Brettsperrholz BBS

Design considerations (informative)

Design according to the theory of flexible bonded beams

The calculation of elements with up to five layers can be performed using the theory of flexible bonded beams as described in EN 1995-1-1.

To consider deformations due to shear the factor s_i/K_i according to the standard is substituted by the factor $\bar{h_i}/(G_R \cdot b)$.

The effective moment of inertia is calculated by:

$$\begin{split} & \mathsf{l}_{ef} = \frac{3}{\sum } (\mathsf{l}_i \cdot + \gamma_i \cdot \mathsf{A}_i \cdot \mathsf{a}_i^2) & \text{where} \quad \mathsf{A}_i = \mathsf{b}_i \cdot \mathsf{h}_i \, ; & \mathsf{l}_i = \frac{\mathsf{b}_i \cdot \mathsf{h}_i^3}{12} \\ & \gamma_1 = \frac{1}{1 + \frac{\pi^2 \cdot \mathsf{E}_0 \cdot \mathsf{A}_1 \cdot \overline{\mathsf{h}_1}}{\mathsf{G}_R \cdot \mathsf{b} \cdot \mathsf{l}^2} \, ; & \gamma_2 = 1 \, ; & \gamma_3 = \frac{1}{1 + \frac{\pi^2 \cdot \mathsf{E}_0 \cdot \mathsf{A}_3 \cdot \overline{\mathsf{h}_2}}{\mathsf{G}_R \cdot \mathsf{b} \cdot \mathsf{l}^2}} \\ & \mathsf{a}_1 = \left(\frac{\mathsf{h}_1}{2} + \overline{\mathsf{h}_1} + \frac{\mathsf{h}_2}{2}\right) - \mathsf{a}_2 \, ; & \mathsf{a}_3 = \left(\frac{\mathsf{h}_2}{2} + \overline{\mathsf{h}_2} + \frac{\mathsf{h}_3}{2}\right) + \mathsf{a}_2 \\ & \mathsf{a}_2 = \frac{\gamma_1 \cdot \mathsf{A}_1 \cdot \left(\frac{\mathsf{h}_1}{2} + \overline{\mathsf{h}_1} + \frac{\mathsf{h}_2}{2}\right) - \gamma_3 \cdot \mathsf{A}_3 \cdot \left(\frac{\mathsf{h}_2}{2} + \overline{\mathsf{h}_2} + \frac{\mathsf{h}_3}{2}\right)}{\frac{5}{\mathsf{i}=1} (\gamma_i \cdot \mathsf{A}_i)} \end{split}$$

The bending stress in the centre of the boards may be disregarded. The governing bending stress in the outermost fibre of the boards:

$$\sigma_{m,r,i,d} = \pm \frac{M_d}{I_{ef}} \cdot \left(\gamma_i \cdot a_i + \frac{h_i}{2}\right) \le f_{m,d}$$

Shear design is in the governing plane:

$$\tau_{v,d} = \frac{V_d \cdot \gamma_i \cdot S_i}{I_{ef} \cdot b} \leq f_{R,d}$$

Notation:

h_{tot} = thickness of the whole element [mm]

h_i = thickness of the layer i parallel to the direction of load transfer [mm]

h_i = thickness of the layer i perpendicular to the direction of load transfer [mm]

b = width of the element [mm]

n = number of layers

I = span width [mm]

- l_{ef} = effective moment of inertia [Nmm²]
- G_R = rolling shear modulus [N/mm²]
- E_0 = modulus of elasticity parallel to the grain of the boards [N/mm²]

Binderholz Brettsperrholz BBS

Design considerations (informative)

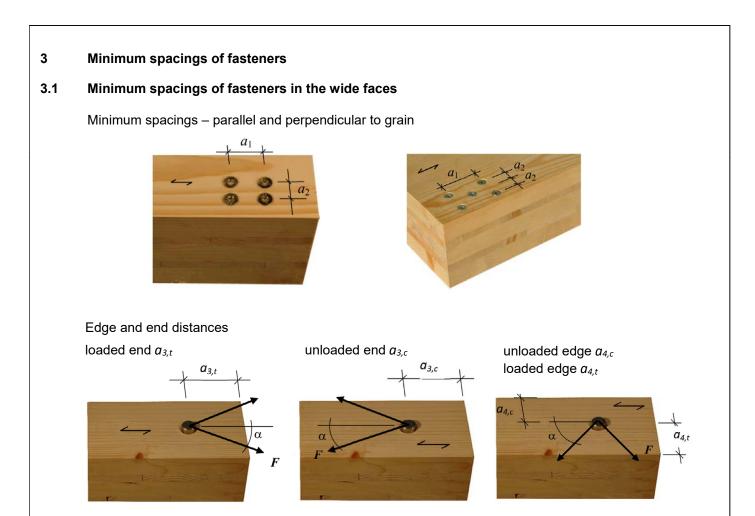
2 Recommendations for the design of the fasteners

The determination of characteristic values of the load-bearing capacity of connections with mechanical fasteners shall be carried out according to EN 1995-1-1 or acc. to a European Technical Assessment of the fastener as for softwood or for glued laminated timber.

It is recommended to retain minimum diameter for dowel type fasteners. If there are no other values given in a technical specification of the fastener, the following minimum diameter apply:

- Nails shall only be used above a minimum diameter of 2.8 mm.
- Screws in the wide faces shall only be used above a minimum diameter of 4.0 mm. Screws in the narrow faces shall only be used above a minimum diameter of 8.0 mm. The outer thread diameter shall be used as the relevant diameter d of the screw. Wide faces are the surfaces of the element parallel to the plane of the element consisting of the surface of the outer layers. Narrow faces are the lateral and the cross grain board surfaces perpendicular to the plane of the element.

Penetration lengths lef < $4 \cdot d$ (outer thread diameter) should not be considered as load-carrying for screws.


Binderholz Brettsperrholz BBS

Design of connections (informative)

Page 19 of European Technical Assessment ETA-06/0009 of 27 September 2022

English translation prepared by DIBt

Table 4a: Minimum spacings of fasteners in the wide faces

fastener	a1	a _{3,t}	a _{3,c}	a ₂	a _{4,t}	a _{4,c}	
screws ¹⁾	4·d	6∙d	6∙d	2.5∙d	6∙d	2.5·d	
nails	(3+3·cosα)·d	(7+3·cosα)·d	6∙d	3·d	(3+4·sinα)·d	3·d	
dowels	(3+2·cosα)∙d	5∙d	4·d·sinα min. 3·d	3·d	3∙d	3·d	
bolts	(3+2·cosα)·d min. 4·d	5∙d	4·d·sinα min. 4·d	4·d	3·d	3·d	
 α angle between force and grain direction of the cover layer ¹⁾ self-tapping screws 							

Binderholz Brettsperrholz BBS

Spacing of fasteners (informative)

3.2 Minimum spacings, minimum thicknesses, minimum layer thicknesses und minimum penetration lengths of fasteners in the narrow faces

The minimum spacings in the narrow faces are independent of the angle between fastener axis and grain direction.

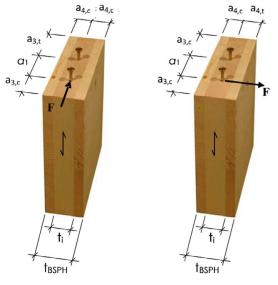


 Table 4b:
 Minimum spacings of fasteners in the narrow faces

	a ₁	a 3,t	a 3,c	a 2	a 4,t	a 4,c	
screws 1)	10·d	12∙d	7∙d	3∙d	6∙d	5∙d	
dowels	4∙d	5∙d	3∙d	3∙d	5∙d	3∙d	
bolts	4∙d	5∙d	4∙d	4∙d	5∙d	3∙d	
¹⁾ self-tapping screws							

Table 4c:	Requirements for fasteners in the narrow faces of cross laminated timber
-----------	--

fastener	Minimum thickness of the cross laminated timber	Minimum thickness of the relevant layer	Minimum penetration length of the fastener t_1 oder t_2 *)		
	t _{BSPH} in mm	t _i in mm	in mm		
screws	10∙d	d > 8 mm: 3·d d ≤ 8 mm: 2·d	10·d		
dowels	6∙d	d	5∙d		
 *) t₁ Minimum penetration length of the fastener in side members (member to be connected) t₂ Minimum penetration length of the fastener in middle members (cross laminated timber element) 					

Binderholz Brettsperrholz BBS

Spacing of fasteners (informative)

Reference documents

EAD 130005-00-0304, European Assessment Document for "Solid wood slab element to be used as a structural element in buildings", Edition March 2015

EN 301:2017, Adhesives, phenolic and aminoplastic, for load-bearing timber structures

EN 338:2016, Structural timber - Strength classes

EN 1995-1-1:2004 + A1:2008 + A2:2014, Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings

EN 13183-2:2002, Moisture content of a piece of sawn timber – Part 2: Estimation by electrical resistance method

EN 13986:2014 + A1:2015, Wood-based panels for use in construction – Characteristics, evaluation of conformity and marking

EN 14080:2013, Timber structures - Glued laminated timber and glued solid timber - Requirements

EN 15425:2017, Adhesives - One component polyurethane for load bearing timber structures - Classification and performance requirements

EN ISO 10456:2007 + AC:2009, Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values

Binderholz Brettsperrholz BBS

Reference documents