Solid timber manual 2.0

SUSTAINABILITY 8 The forest as a carbon drain In times of rising CO2 emissions due to increasing anthropogenic emissions, groomed and stable forests through regulated forestry, like they can be found in all of Northern and Central Europe, are one of the decisive factors in the reduction of the CO2 load in the atmosphere. The graphic below shows how important a regulated forest cultivation by means of forestry management is (see Figure 4). While the carbon balance in an unmanaged forest remains balanced due to the dying off and rotting of trees, the balancing in a cultivated forest takes a different course: when wood is harvested, the carbon remains stored in the harvested wood – meaning the rotting phase is simply skipped. If the cultivation of the forests was discontinued, there would be neither wood products storing additional carbon nor biomass that might replace fossil energy carriers. Thus, global warming would progress even faster. Therefore, non-cultivated forests are less beneficial for the atmosphere than cultivated forests. This is so because the wood cannot be used and the natural rotting causes that the CO2, which has been absorbed by the tree during its growth phase, is released to the atmosphere again. CO2-sequestration - long-term deposit and storing of carbon Based on the ability of trees to store it for the long term, even after the harvest, not only the forest but foremost also buildings, furniture or even toys made of wood contribute as carbon stores to the reduction of the CO2 content in the atmosphere. As a rule of thumb, 1 m³ of wood stores nearly one tonne of CO2 equivalents from the atmosphere. Extrapolated, this means that the Austrian forest stores approx. 3 billion tonnes of CO2 equivalents. This is almost 35-times as much as greenhouse gases emitted by Austria per year. Trees bind carbon dioxide and store it as biogenic carbon over a long period. Every used trunk creates space for new trees and increases the carbon store in the wood. Buildings with wood therefore make sense in all aspects, especially since wood is available to sufficient extent everywhere in our latitudes. At the same time, it is a natural and sustainable raw material that can be subject to a comprehensive natural cascade as a cyclical material. Figure 4 – Effects of the carbon drain between the forestry and the jungle, Zuschnitt 65, proHolz Austria Wälder speichern große Mengen an Kohlenstoff und sind daher wichtig für den globalen Kohlenstoffkreislauf. Seit 1960 hat sich der CO2-Anteil in der Atmosphäre von 218 ppm auf aktuell ca. 385 ppm um 0,039 Prozent erhöht. Ohne CO 2 in der Atmosphäre hätten wir eine durchschnittliche Welttemperatur von – 16 °C und nicht wie derzeit ca. + 15 °C. In Österreich hat die Jahresmittel - temperatur seit 1960 um 1,5 °C zugenommen, während sich die jährlichen Niederschläge im Mittel nicht verändert haben. Wald puffert große Mengen an CO 2 und ohne Wald hätten wir eine um 30 Prozent höhere CO 2-Konzentration. Die globale Waldfläche ist damit gemeinsam mit den Ozeanen der wichtigste „Klimapuffer“ und Walderhaltung bzw. eine Erweiterung der Waldflächen ist Teil des Klimaschutzes. Was bewirkt Waldwirtschaft? Waldökosysteme binden Kohlenstoff. Mit der Kompostierung von abgestorbener Biomasse setzen Wälder Kohlenstoff frei. Großflä - chige, vom Menschen unbeeinflusste Waldökosysteme (Urwälder) binden in etwa die gleiche Menge Kohlenstoff, die sie durch Ab - bauprozesse freisetzen. Ein 300 Hektar großer Urwald mit einer idealen Altersklassenverteilung ist CO 2-neutral und hat somit auch keine Senkenleistung. Waldwirtschaft hingegen nutzt Holz am Ende der Optimalphase und führt es idealerweise im Sinne einer sogenannten kaska - dischen Verwendung der gesellschaftlichen Nutzung zu. Am Ende des Prozesses verrottet dann Holz wieder bzw. wird für die Ener - gieerzeugung verwendet. Damit werden fossile Energieträger (Erdöl, Erdgas) subsituiert und durch die erneuerbare Ressource Holz aus nachhaltiger Waldwirtschaft ersetzt. Im Gegensatz zu einem Urwald hat ein 300 Hektar großer Wirtschaftswald mit idealer Altersklassenverteilung aufgrund von Substitutionseffek - ten (Ersatz von fossilem C) einen positiven Effekt. Im Gegensatz zum Urwald wird C bzw. CO 2 nicht durch Zersetzungsprozesse freigesetzt, sondern geerntet und erst wieder im Zuge der energe - tischen Nutzung an die Atmosphäre abgegeben. Das Kyoto-Protokoll Die international wichtigste Vereinbarung zum Klimaschutz ist das Kyoto-Protokoll. Ein wichtiges Ziel des Kyoto-Protokolls ist die Erhaltung der globalen Waldfläche, die außer in Europa auf - grund der Umwandlung in landwirtschaftliche Flächen und Sied lungsraum für die wachsende Bevölkerung abnimmt. Österreich hat sich bei der Klimakonferenz im japanischen Kyoto zu einer Reduktion des CO 2-Ausstoßes bis 2012 um 13 Prozent, bezogen auf das Niveau von 1990 (79 Mio. t CO2), verpflichtet. Seit Februar 2005 gilt diese Vereinbarung. Im Jahr 2012 wäre für Österreich ein Ausstoß von 68,87 Mio. t CO2 erlaubt gewesen, tatsächlich betrug dieser 80,2 Mio. t. Hauptverursacher waren der Verkehr (ca. 30 Prozent) und die Industrie ( 29 Prozent). Auch wenn in Österreich die Waldfläche jährlich um 7.000 Hektar zunimmt und damit ein wichtiger Beitrag zum Klimaschutz geleistet wird, muss Österreich den CO 2-Ausstoß senken, um die Klimaziele zu erreichen. Dazu sind auch die Förderung erneuer - barer Energien sowie der Verwendung von Holz, das in Gebäuden, Möbeln etc. als „Zwischenlager“ für Kohlenstoff dient, not wendig. Diese „Zwischenlagerung“ bzw. „kaskadische“ Verwendung von Holzprodukten verringert den CO 2-Gehalt in der Atmosphäre. Es wird eine Intensivierung der Waldwirtschaft er - wartet, wobei auf die Nachhaltigkeit zu achten ist. Reisig und Ä te müssen im Wald verbleiben, damit es zu keinen Degradierungen der Standorte kommt. Hubert Hasenauer ist Professor für Waldbau und Leiter des Instituts für Waldbau an der Universi - tät für Bodenkultur in Wien. Seine Forschungsinteressen sind Waldbewirtschaftungskonzepte und Kohlenstoffkreisläufe sowie die Weiterentwicklung und Anwendung von Ökosystemmodellen in der Klimafolgenforschung. I – Optimal phase: Here, the strongest volume growth takes place and the forest stores large quantities of carbon. The forest is a carbon drain. II – Decomposition phase: The forest has reached its physiological age limit; trees die and discharge carbon to the atmosphere. The forest is a carbon source. III – Rejuvenation phase: The forest is at the end of the decomposition phase with a lot of rejuvenation. The forest is carbon-neutral because decomposition and growth processes are about equal. Hubert Hasenauer The cultivated forest Carbon is bound, turnover time of 150 years, carbon release outside of the forest. The jungle Carbon is constant, a full lifecycle of 300 years can be seen, no cultivation. 0 50 100 150 200 250 300 years I II III 350 300 250 200 150 100 50 0 Carbon (t⁄ ha⁄ a) CO2 Carbon storage in the forest Growth and extraction Carbon storage in the installed wood product Continuous growth through long-term use C C C C C C C C C C C C C C C

RkJQdWJsaXNoZXIy NTQ5ODU5